SINEAX V620

Universal Signal Converter
for mA, V, TC, RTD, Ω

General characteristics

- Universal input: voltage, current, thermocouples, thermoresistences, potentio-
meter, rheostat.
- Sensor powered by 2 -wire technique: 20 VDC stabilised, 20 mA max. with
short-circuit protection.
shor-CCircuit protection
Measurement and re-transmission on isolated analog output, with voltage and
current output. IP-switch for
tio-switch for selecting: type of input, START-END, output mode (zero eleva-
tion, scale inversion), output voltage type (mA or V). Front panel indicating: power on, off scale or setting error, alarm status.
- Relay (spst) output, programmable through PC.
- STROBE input to activate the analog output on PLC command (alternatively to alarm contact).
- Faciility for programming the following with a PC: beginning and end scale, ad-
ditional input types, square root extraction, filter, burn-out etc. - 3-point insulation: 1500 V AC .

Power supply	$10 \ldots 40 \mathrm{~V} \mathrm{DC}, 19 \ldots 28 \mathrm{~V} \mathrm{AC}, 50 \ldots 60 \mathrm{~Hz}$, max. 2.5 W ; 1.6 W at 24 V DC with 20 mA output			
Voltage input	Bipolar from 75 mV up to 20 V in 9 scales, input impedance $1 \mathrm{M} \Omega$, resolution max. 15 bits + sign			
Current input	Bipolar up to 20 mA , input impedance 50Ω, resolution max. $1 \mu \mathrm{~A}$			
Thermoresistance (RTD) input PT100, PT500, PT1000, Ni100, KTY81, KTY84, NTC	2,3 or 4 wires measurement, energising current 0.56 mA , resolution $0.1^{\circ} \mathrm{C}$, automatic detection of cable interruption or RTD. Resistive value for NTC: $<25 \mathrm{k} \Omega$. KTY81, KTY84 and NTC may be set only via software			
Thermocouple input	Type J, K, R, S, T, B, E, N; resolution $2.5 \mu \mathrm{~V}$, automatic detection of TC interruption, input impedance $>5 \mathrm{M} \Omega$			
Rheostat input	Full scale min. 500Ω, max. $25 \mathrm{k} \Omega$			
Potentiometer input	Excitation voltage 300 mV , input impedance $>5 \mathrm{M} \Omega$, potentiometer value from 500Ω to $100 \mathrm{k} \Omega$ (with the aid of a parallel resistence equal to 500Ω)			
Sampling frequency	Variable from 240 sps with 11 bits resolution + sign to 15 sps with 15 bits + sign resolution (typical values))			
Response time	35 ms with 11 bits resolution, 140 ms with 16 bits resolution (measurement of voltage, current, potentiometer)			
Output	I: $0 \ldots 20 / 4 \ldots 20 \mathrm{~mA}$, max. Ioad resistance 600Ω $\mathrm{V}: 0 \ldots 5 / 0 \ldots 10 / 1 \ldots 5 / 2 \ldots 10 \mathrm{~V}$, min. load resistance $2 \mathrm{k} \Omega$ Resolution $2.5 \mu \mathrm{~A} / 1.25 \mathrm{mV}$			
Relay output (spst)	Capacity: 1 A .. $30 \mathrm{VDC} / \mathrm{VAC}$			
Environmental condition	Temperature: $-20 \ldots 60^{\circ}$, humidity min. 30%, max. 90% at $40^{\circ} \mathrm{C}$ non condensing (see «Installation instructions»)			
Errors referred to max measuring range	Calibration error	${ }_{\text {Thermal }}^{\text {Theefficient }}$	Linearity error	Others
Input for voltage/current	0.3\%	$0.01 \% /{ }^{\circ} \mathrm{K}$	0.05\%	EMI: < 1%
Input for PTCs $\mathrm{J}, \mathrm{K}, \mathrm{E}, \mathrm{T}, \mathrm{N}$	0.5\%		$0.2{ }^{\circ} \mathrm{C}$	+(2) EM: <1
Input for PTCs R, S	0.5\%		$0.5{ }^{\circ} \mathrm{C}$	
Input for PTC B (4)	0.5\%		$1.5{ }^{\circ} \mathrm{C}$	
Cold junction compensation	$2^{\circ} \mathrm{C}$ in ambient range 0 to $50^{\circ} \mathrm{C}$			
Potentiometerresistor	0.3\%	$0.01 \% /{ }^{\circ} \mathrm{K}$	$\frac{0.1 \%}{t>0^{\circ} \mathrm{C} 0.02 \%}$	EM: <
Input for thermoresistance (5)	0.3\%			(1) EM: < 1%
Voltage output (3)	0.3\%		0.01\%	
Data memory	EEPROM for all configuration data; storage time: 40 years			

tandards:
EN $61000-6-4 / 2000$ (electromagnetic emission, industrial environment) EN 61000-6-2/2005 (electi
EN 61010-1/2001 (safty)
All circuits are to be safett isolated from hazardous live by doubbe insulation. The power supply transformer must comply with EN 60742: Isolating transformers and safety isolating transfor-
mers reeurirements. mers requirements.
Notes::

- Use with copper conductor
- Use in pollution degree 2 environment
- Power supply must be Class 2
- Power supply must be Class 2 1
max. 2.5 A shall be installed in the field.
(1) Influence of cable resistance $0.005 \% / \Omega$, max. 20Ω
(2) n nfluence of cable resistance 0.1 HV/
(1) Infuence of cable resistance $0.005 \% / \Omega$, max. 20Ω
(2) nlumenco of cable resistance $0.14 v / \Omega$,
(3) Values to be added to the erors of the selected input

Selection input / measuring scale

The type of input is selected by setting the SW1 DIP-switch group at the side
Every type of input is matched to a certain number of scale beginnings and ends values which can be selected with the SW2 group. The table below lists possible START and END values according to the type of Note for all following tables:
Note indication © indicates. that the DIP-switch is set in position ON.
No indication is provided when the DIP-switch is set in position OFF!

sw2: START and END

sw2

${ }^{(}{ }^{*}$) START or END are set in the memory with the PC or with the programming
push-buttons.

N.B.: DIP-switches must be set while the module is powered down, other- wise, the module may be damaged!

at
The START and END push-buttons under the SW2 DIP-switch group allow to set
the beginning and end scale at will within the scale pre-set through the DIP-switthe beginning and end scalea e at will within the scale pre-set through the DIIP-swit-
ches. To obtain this facily it is necessary to use a suitable signal generator, able ches. To obtain this facility it is necessary to use a suitable s
to furnish the desidered values of beginning and end scale.

The procedure is following

1. Set through DIP-switches, the type of input, START and END measurement which include the required beginning and end values.
. Power up the module.
2. Supply a calibrator or simulator of the signal you wish to measure and retrans mit.
3. Set the required START value on the calibrator (or other instrument).
4. Press the START push-button for at least 3 sec. The green LED on the front
panel flashes to indicate the value has been stored. 6. Repeat points 4 and 5 for the required END value.
5. Repeat points 4 and 5 for the required END value.
6. Cut power to the module and set to OFF position the DIP-switches of group
SW2, correspondent to the settings of START and END values. The module is now configured for the required start and end scale The module is now configured for the required start and end scale. To reprogram
it (e.g. for a different type of input) repeat the whole procedure.

Selecting output

DIP-switches numbers 7 and 8 of the SW2 group enable you to set the output
with or without zero elevation, or as a normal or reversed with or without zero elevation, or as a normal or rev.
switch group enables you to select the output type.
N.B.: DIP-switches must be set while the module is powered down, avoiding electrostatic discharges, otherwise the module may be damaged.

Setting with a PC

By using a PC and V620N622-C software, it is possible to set other normally fixed parameters in addition to start and end scale.

- Additional input types
- Digital filter (normally disabled)
- Square root extraction (normally disabled)
- Negative burn-out (normally positive)
- Alarm (normally set as error signalling)
- Start and end scale of the analog output
- Value of the analog output in case of erro
- Rejection programmable for 50 or 60 Hz mains frequency (normally set to (Hz)
- Sampling frequency/resolution (normally set to $15 \mathrm{sps} / 16$ bits)
- 3 or 4 wires measure for thermal resistance (normally set to 3 wires) - Action of the digital output alarm in case of fault.

Instructions for setting and for the connection cable are supplied with the software (to be requested as an accessory item)

LED indication on the front

Green LED	Meaning
Flashing (freq: 1 flash/s)	Out range, burn-out or internal fault
Flashing (freq = 2 flashes/s)	Error on DIP-switches setting
Steady ON	Indicates the presence of power supply
Yellow LED	Meaning
Steady ON	Alarm signalling (relay contact opened)
OFF	No alarm (relay contact closed)

Electrical connections

$2019 \div 28 \mathrm{VAC} \begin{aligned} & \text { Power supply voltage must be in the range } 10 \text { to } \\ & 40 \mathrm{VDC} \text { (at any polarity), } 19 \text { to } 28 \mathrm{~V} \mathrm{AC} \text {; also see }\end{aligned}$
$10 \div 40 \mathrm{VDC} \quad 40 \mathrm{VDC}$ (at any polarity), 19 to 28 VAC ; also see
$3 \oslash 10 \div 40$ VDC section "Installation instructions".
the power supply source avaid serious damage to the module. Protect of suitable size.
 on an V620. To enable it see "Settings through internal bridges".
(8) Active output (powered) to connect to passive inputs.
(9) Unpowered passive output to be connected to active inputs. To enable it,
see "Settings through internal bridges"
(10) As alternative to STROBE input; relay contact normally closed, opened in (10) As aternative to
event of alarm.

Installation instruction

The module was designed for fitting to guide 46277, in a vertical position. For
optimum operation and long life, make sure adequate ventilation is provided for the module/s, avoiding placing raceways or other objects which could obstruct the ventilation grilles. Do not install the modules above appliances generating heat we advise you to install in the lower part of the panel.

Severe operating conditions

Severe operating conditions are as follows:

- High power supply voltage ($(>30 \mathrm{VDC} />26 \mathrm{VAC}$).
- High power supply voltage (> 30 VDC
- Use of the output on generated current

When modules are installed side by side, it may by necessary to separate them
by at least 5 mm in the following cases:

- If panel temperature exceed $45^{\circ} \mathrm{C}$ and at least one of the severe operating conditions exists.
- If panel temperature exceed $35^{\circ} \mathrm{C}$ and at least two of the severe operating
conditions exists.

Electrical connections

We advise you to use shielded cables for connecting signals. The shield must
be connected to an earth wire used specifically for instrumentation. Moreover be connected to an earth wire used specifically for instrumentation. Moreover,
it is good practice to avoid routing conductors near power appliances such as inverters, motors, induction ovens, etc.
Camille Bauer Metrawatt AGG $\begin{aligned} & \text { Phone. }+41566182111 \\ & \text { Fax }+41566182121\end{aligned}$

SINEAXV62
ENGLISH 4/4

